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Abstract

In this paper, non-isothermal flow of a polymeric liquid past a circular cylinder in an infinite domain is investigated

numerically. A non-Newtonian fluid, known as a differential-type White–Metzner model, is used in the flow simulation.

The computer code developed is based on the elastic-viscous split-stress finite element method incorporating the

streamline-upwind Petrov–Galerkin scheme. Numerical solutions for several cases are obtained. Global flow charac-

teristics, such as drag coefficient and heat transfer coefficient, are derived. The effects of fluid elasticity, inertia, and

shear-thinning on drag and heat transfer are also investigated.

� 2003 Elsevier Ltd. All rights reserved.
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1. Introduction

The non-isothermal flow of a polymeric or visco-

elastic fluid past a submerged circular cylinder, as shown

in Fig. 1, is considered in this study. The understanding

of such a flow is required for important engineering

applications and has attracted a great deal of attention

in the literature. The earliest theoretical studies on this

problem were conducted by Ultman and Denn [1], Mena

and Caswell [2]. Decrease of drag as a quadratic func-

tion of the free stream velocity and an associated slight

displacement of the streamlines downstream were con-

cluded for small Reynolds number (Re < 0:1).
Experimental investigations show the effects of elas-

ticity on the streamline patterns, drag, and heat-transfer.

Manero and Mena [3] presented photographic evidence

that the streamline shift may occur in either down-

stream or upstream, depending on the magnitude of

elastic contributions to the flow. James and Acosta [4]
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described the measurements of heat transfer and drag

for the flow of dilute polymer solutions past small cy-

linders, and formulated the dependence of heat-transfer

and drag on fluid velocity, cylinder diameter, and

polymer weights.

Numerical solutions for non-Newtonian flow around

a cylinder have been established by a number of re-

searchers. Pilate and Crochet [5] investegated a second-

order fluid model at low to moderate Deborach numbers

(0 < De < 1) and low to high Reynolds numbers

(0:1 < Re < 100). They found that the viscoelasticity of

the fluid reduces the drag at very low Reynolds numbers,

while the opposite is true for high Reynolds numbers.

Townsend [6] considered a shear-thinning Oldroyd

model at low Deborach numbers and predicted a small

displacement of the streamlines downstream, as ob-

served experimentally by Manero. Delvaux and Crochet

[7] used a mixed finite element method for a non-shear-

thinning Maxwell fluid at Reynolds number ranging

from 0.2 to 3.0. They found that both drag coefficient

and Nusselt number depend on Reynolds number.

Recently, finite element methods have been devel-

oped to overcome the convergent difficulties encoun-

tered when simulating viscoelastic flow problems.
ed.
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Nomenclature

Cp specific heat capacity, kJ/kg �C
De Deborah number, dimensionless

d rate-of-deformation tensor, s�1

d ð1Þ the upper-convected derivative of the rate-

of-deformation tensor, s�2

k thermal conductivity, W/mK

K normalized drag, dimensionless

Nu Nusselt number, dimensionless

p pressure, N/m2

Pr Prandtl number

Re Reynolds number

R radius of the cylinder, m

s the elastic part of the viscoelastic stress s,
N/m2

We Weissenberg number, dimensionless

U1 free-stream velocity, m/s

Greek symbols

$ gradient operator, m�1

q free stream density, kg/m3

s the viscoelastic stress of the polymer liquid,

N/m2

sð1Þ the upper convected derivative of the

viscoelastic stress s, N/(m2 s)
_cc shear-rate tensor, s�1

h _cci average shear-rate, s�1

gð _ccÞ viscosity function, Pa s

k relaxation-time, s

/i quadratic basic function

wi bilinear basic function

Fig. 1. Flow geometry and boundary conditions.

4734 G.H. Wu et al. / International Journal of Heat and Mass Transfer 46 (2003) 4733–4739
Marchal and Crochet [8] applied the streamline-upwind

Petrov–Galerkin finite element method to discretize the

constitutive equation for elastic-flow problems, each ele-

ment was subdivided into a 4� 4 sub-element for stress

analysis, and showed good behavior for highly elastic

flow problem, but was expensive in terms of computer

time. Another method, called the elastic-viscous split-

stress (EVSS) finite element method, was proposed by

Mendelson et al. [9] in 1983 to simulate the flow of

viscoelastic fluids with Newtonian viscosity such as the

Oldroyd-B fluids. This method employs the splitting of

the extra-stress into its viscous and elastic terms, and a

change of variables for the momentum and the consti-

tutive equations, yielding a set of equations involving

the velocity t, the pressure p, and the new elastic-stress s.
The rate-of-deformation tensor d is also introduced as

an additional unknown, leading to a four-field ðt; p; s; dÞ
problem. In 1994, the EVSS finite element method in-

corporating the streamline-upwind Petrov–Galerkin
technique (known as the EVSS/SUPG finite element

method) was proposed by Debae et al. [10] and proved

to be accurate and stable for the viscoelastic flow

problems with smooth boundaries.

In present study, the EVSS/SUPG finite element

method is used to simulate the non-isothermal flow of

polymeric fluids past a submerged circular cylinder in an

infinite domain. The SUPG technique is also applied to

the momentum equation to cover the high Reynolds

number regimes. Consequently, the flow characteristics

of the fluid are obtained. Furthermore, the effects of

fluid elasticity, inertia, and shear-thinning are investi-

gated.
2. Mathematical modelling

A viscoelastic fluid flow past a submerged circular

cylinder of radius R, as shown in Fig. 1. The computa-

tional domain covers 25R upstream and 50R down-

stream of the cylinder. Non-isothermal flow of a

viscoelastic fluid is governed by the following set of

conservation and constitutive equations.

Continuity equation:

$ � t ¼ 0: ð1Þ

Momentum equation for neglecting body forces:

qðt � $Þt ¼ �rp þ $ � s; ð2Þ

where s is the extra stress.

The total stress tensor is expressed as

r ¼ �pI þ s; ð3Þ

where p is pressure and I is the unit tensor.
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For fluids with constant density q, specific heat ca-

pacity Cp, and thermal conductivity k, all being consid-

ered as constants, the energy equation for neglecting

heat dissipation can be written as

qCpt � $T ¼ $ � kð$T Þ: ð4Þ

The constitutive equation employs the White–

Metzner type model, which was also used by Chono and

Iemoto [11] to describe both the elastic and shear-thin-

ning behavior of a 1% sodium carboxymethyl celluose

(CMC) liquid as:

s þ ksð1Þ ¼ g _cc: ð5Þ

The meaning of each term in Eq. (5) are summarized as

follows:

Upper convective derivative of the extra stress:

sð1Þ ¼ t � $s � $tT � s � s � $t:

Shear-rate tensor:

_cc ¼ $t þ $tT:

Relaxation-time function:

k ¼ kð _ccÞ:

Viscosity function:

g ¼ gð _ccÞ:

The relaxation-time function can be obtained via the

following equation:

kð _ccÞ ¼ w1ð _ccÞ=2gð _ccÞ; ð6Þ

where w1ð _ccÞ is the first normal stress difference coeffi-

cient function.

The viscosity and the first normal stress difference

coefficient function are defined as respectively:

gð _ccÞ ¼ g1 þ g0 � g1

ð1þ 4k1 _cc2Þð1�nÞ=2 ; ð7Þ

w1ð _ccÞ ¼ W1 þ W0 � W1

ð1þ 4k2 _cc2Þð2�mÞ=2 ; ð8Þ

where g0 and W0 are the viscosity and the primary nor-

mal stress coefficient at zero shear-rate, respectively. The

parameters used in Eqs. (7) and (8) are g0 ¼ 1:0 Pa s,

g1 ¼ 0:01 Pa s, k1 ¼ 44.8 s, n ¼ 0:608, W0 ¼ 10 Pa s2,

W1 ¼ 0:001 Pa s2, k2 ¼ 10:5 s, and m ¼ 0:639.
3. Numerical method

The EVSS/SUPG finite element method has been

proven to be accurate and stable for viscoelastic flow

problems with smooth boundaries by Debae. The gov-

erning equations in EVSS form for the present flow

problem is derived as follows.
3.1. Non-dimensional governing equations in EVSS form

In the EVSS formulation, the viscoelastic stress is

split into its elastic and viscous components:

s ¼ sþ 2gd; ð9Þ

where s denotes the elastic component of the viscoelastic
stress and 2gd represents the viscous component.

Upon substituting ðsþ 2gdÞ for s into Eqs. (1)–(5),

the governing equations in EVSS form become:

$ � t ¼ 0; ð10Þ

qt � $t ¼ $ � ð�pI þ sþ 2gdÞ; ð11Þ

qCpt � $T ¼ $ � kð$T Þ; ð12Þ

sþ kðsð1Þ þ 2gd ð1ÞÞ ¼ 0; ð13Þ

d � ð$t þ $tTÞ=2 ¼ 0: ð14Þ

When appropriate dimensionless variables are intro-

duced, the dimensionless governing equations can be

obtained as follows:

$� � t� ¼ 0; ð15Þ

Re t� � $�t� ¼ $� � ð�p�I þ s� þ 2g�d�Þ; ð16Þ

Re Pr t� � $�T � ¼ $�2T �; ð17Þ

s� þ We k�ðs�ð1Þ þ 2g�d�
ð1ÞÞ ¼ 0; ð18Þ

d� � ð$�t� þ $�t�TÞ=2 ¼ 0; ð19Þ

where the dimensionless variables are defined as follows:

x� ¼ x=2R, t� ¼ t=U1, r� ¼ 2Rr, g� ¼ g=g0, k� ¼ k=k0,
T � ¼ ðT � T1Þ=ðTw � T1Þ, p� ¼ 2pR=ðU1g0Þ, d� ¼ 2dR=
U1, and s� ¼ 2sR=ðU1g0Þ. The Reynolds number,

Weissenberg number, and Prandtl number are defined as:

Re ¼ 2qU1R=g0; ð20Þ

We ¼ U1k0=R; ð21Þ

Pr ¼ g0Cp=k: ð22Þ
3.2. Weak formulation of the non-dimensional governing

equations

The field variables are interpolated within each ele-

ment by

t� ¼
XN¼8

i¼1
/it

�
i ; p� ¼

XM¼4

i¼1
wip

�
i ; s� ¼

XM¼4

i¼1
wis

�
i ;

d� ¼
XM¼4

i¼1
wid

�
i ; T � ¼

XN¼8

i¼1
/iT

�
i ;

where t�
i , p

�
i , s

�
i , d

�
i , T

�
i are nodal values and /i, wi are

quadratic and bi-linear basic functions, respectively.
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Following the traditional Galerkin�s manipulations,
the weak form of the non-dimensional governing Eqs.

(15) and (19) can be derived as follows:Z
X

wið$� � t�ÞdX ¼ 0; ð23Þ
Z

X
wi½d� � ð$�t� þ $�t�TÞ=2�dX ¼ 0: ð24Þ

The traditional Galerkin method is known to be in-

appropriate when the convective terms in the hyperbolic

constitutive equation becomes dominant as the Weis-

senberg number increases. The SUPG technique pro-

posed by Brooks and Hughes [12] is therefore applied to

the constitutive equation (18). An additional weighing

function ð�kk�t�=t� � t�Þ � r�wi is applied to all the terms

of the constitutive equation. The definition of the di-

mensionless �kk� can be found from [13], as originally

proposed by Brooks and Hughes [12]. Hence, the fol-

lowing weak form is then obtained:Z
X
½wi þ ð�kk�t�=t� � t�Þ � $�wi�

� ½s� þ Wek�ðs�ð1Þ þ 2g�d�
ð1ÞÞ�dX ¼ 0: ð25Þ

Due to the relatively high Peclet and Reynolds number

of this problem, the SUPG formulation developed by

Brooks and Hughes is used to suppress the undesirable

oscillations in the calculation of the velocity and tem-

perature fields. To solve the two equations by this

method, an additional weighing function formulation

ð~kk�t�=t� � t�Þ � $�/i is applied to all terms of the mo-

mentum Eq. (16) and energy Eq. (17), where ~kk� is the

dimensionless form of ~kk as originally proposed by

Brooks and Hughes [12]. Consequently, the following

weak forms are finally obtained as:
Z

X
½/0

iðRe t� � $�t�Þ þ $�/0
i � ð�p�I þ s� þ 2d�ÞdX�

�
Z
s

/in � ð�p�I þ s� þ 2d�Þds ¼ 0; ð26Þ
Z

X
f/0

i½Re Pr t� � $�T �� þ $�/0
i � $�T �gdX

�
Z
s

/in � $�T � ds ¼ 0; ð27Þ

where /0
i ¼ /i þ ð~kk�t�=t� � t�Þ � $�/i.

Since the integrals in Eqs. (23)–(27) are integrals of

polynomial functions, they may be readily evaluated

numerically by use of Gaussian quadrature. The above

discretization processes lead to a system of non-linear

equations of the form

Kðx�Þx� ¼ f ; ð28Þ

where Kðx�Þ is global stiffness matrix, f is the force

vector, x� ¼ ðt�ð1Þx � � � t�ðn1Þx , t�ð1Þy � � � t�ðn1Þy , s�ð1Þxx � � � s�ðn2Þxx ,
s�ð1Þyy � � � s�ðn2Þyy , s�ð1Þxy � � � s�ðn2Þxy , d�ð1Þ
xx � � � d�ðn3Þ

xx , d�ð1Þ
yy � � � d�ðn3Þ

yy ,

d�ð1Þ
xy � � � d�ðn3Þ

xy , p�ð1Þ � � � p�ðn4Þ, T �ð1Þ � � � T �ðn5Þ, and n1, n2, n3,
n4, n5 are respectively the number of velocity, elastic-

stress, rate-of-deformation, pressure, and temperature

nodal points.

The Newton–Raphson iteration method is employed

to solve the above set of non-linear equations. Due to

the sparseness and asymmetry of the global stiffness

matrix, the biconjugate gradient stabilized (BiCGStab)

method [14] has been developed to compute all the un-

knowns at each iteration step. Convergence is con-

sidered to be achieved when the relative error of each of

the dimensionless variables is less than 10�4.
4. Results and discussion

Numerical results for the present problem have been

obtained and compared for the following three types of

fluids:

(1) Upper-convected Maxwell (UCM) fluid (g ¼ con-

stant, k ¼ constant),

(2) CMC fluid (g ¼ gð _ccÞ, k ¼ kð _ccÞ),
(3) Newtonian fluid (g ¼ constant, k ¼ 0).

The CMC fluid is the shear-thinning case of the UCM

fluid, and the Newtonian fluid is the simply inelastic

case.

The fluid properties and the geometry are fixed, while

the free streamline velocity U1 is allowed to vary.

Simulations are performed for Re numbers ranging from
0.5 to 8, corresponding to Weissenberg numbers (We)
ranging from 0.063 to 1.0. Three finite-element meshes

containing 216, 436, and 896 elements (labeled M1, M2,

and M3, respectively) are used for the computation

domain, as shown in Fig. 2. The number of nodes and

degrees of freedom (DOF) associated with each mesh

are summarized in Table 1.

4.1. Drag on the cylinder

The total drag force on the cylinder is simply the sum

of the stream-wise components of the normal and shear

stresses, and can be easily found by the following

equation due to Dhahir and Walters [15]. For unit

length of the cylinder:

D ¼ �2
Z p

0

½rxx cos h þ rxy sin h�r¼RRdh; ð29Þ

where rxx ¼ �p þ sxx and rxy ¼ sxy .
Consequently, the drag coefficient can be obtained

readily as:

CD ¼ D
AfðqU 2

1=2Þ ; ð30Þ



Fig. 3. CD vs. Re for two different fluid cases.

Fig. 2. Central portions of the finite element meshes used in the

current simulation: (a) mesh M1; (b) mesh M2; (c) mesh M3.

Table 1

Characteristics of the finite element meshes used

MESH No. of elements No. of nodes No. of DOF

M1 216 982 7812

M2 436 2086 16684

M3 896 4024 35624

Fig. 4. Normalized drag vs. Reynolds number.

G.H. Wu et al. / International Journal of Heat and Mass Transfer 46 (2003) 4733–4739 4737
where q ¼ fluid density, U1 ¼ free-stream velocity, and

Af ¼ 2pR.
Numerical solutions for CD as a function of Re are

plotted in Fig. 3 for both the CMC and Newtonian

fluids. The drag coefficients (CD) is first obtained for the

CMC fluid for all three meshes. Solutions of CD from

mesh M2 and mesh M3 are virtually identical, indicating

that mesh M2 is sufficiently fine to obtain reasonable

solutions. Hence, only mesh M2 is used for subsequent

computations. To partially validate the code, CD for the

Newtonian fluid is also obtained. The numerical results

were found to be in good correspondence with Schlich-

ting�s [16] experimental data for 0 < Re < 3. Finally, it is

found that CD decrease as Re increases for the above two
fluids.
The normalized drag K is defined as the ratio of the

drag force D exerted by the viscoelastic fluid on the

cylinder to its Newtonian counterpart DN, or

K ¼ D=DN: ð31Þ

This ratio is plotted as a function of Reynolds number

(Re) in Fig. 4 for both UCM and CMC fluids. For UCM

fluid, K is found to be greater than unity and increases

with Re, especially at high Re number (Re > 6:4), owing
to the non-shear-thinning elastic effect. For CMC fluid,

however, K decreases as Re increases. It can be con-

cluded that fluid elasticity results in higher drag, while

the addition of shear-thinning reduces drag.

As to investigate the effect of shear-thinning on

elasticity and on viscosity separately, simulations using

two additional fluid models have been performed, and

the resulting CD vs. Re for all five fluids are plotted in

Fig. 5. It is clear that shear-thinning on either fluid

elasticity or viscosity will decrease the drag, especially at

high Reynolds number. The coupling effect of shear-

thinning on both properties decreases the drag even

further.



Fig. 5. CD vs. Re for five different fluid models.
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4.2. Nusselt numbers

The local Nusselt number along the cylinder wall and

the overall Nusselt number are defined by the following

expressions, respectively, and can be readily derived

from the temperature field of numerical solutions:

NuðhÞ ¼ oT �

or�

����
r�¼1

and Nu ¼ 1

p

Z p

0

NuðhÞdh: ð32Þ

The dimensionless temperature contours for three dif-

ferent Re are shown in Fig. 6 for CMC fluid. As the fluid

flows past the heated cylinder, heat is convected down-

stream with the high temperature region occurring

around the cylinder. Further downstream, the temper-

ature gradually decreases as more heat is convected

away. It can be seen that the high temperature region
Fig. 6. Partial view of dimensionless temperature contours

for three Reynolds numbers (a) Re ¼ 1:0, (b) Re ¼ 4:0 and

(c) Re ¼ 8:0.
becomes smaller as Re becomes higher. Fig. 7 shows

the variation of Nu with Re for all three fluids. Due to

the fact that a larger amount of heat is removed from the

immersed cylinder with increased Re, Nu also increases.

However, for UCM fluid, it tends to approach a con-

stant value when a critical Re is reached. This pheno-

menon is similar to that observed by James and Acosta

[4] in their experiments on fluid modeled by the Maxwell

constitutive equation. They attribute this to the

stretching of the flow field because of the high Weis-

senberg number effect, and, as a result, reducing the ve-

locity gradient at the cylinder surface. This phenomenon

is attenuated for the shear-thinning CMC fluid, but is

not found in the Newtonian case. The effects of shear-

thinning on fluid elasticity and on viscosity are investi-

gated separately, and the results are summarized in Fig.

8. It is observed that shear-thinning on either fluid
Fig. 7. Nu vs. Re for three different fluid cases.

Fig. 8. Nu vs. Re for five different fluid models.



Fig. 9. Nu vs. Re for three values of Prandtl number.
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elasticity or viscosity increases Nu with the increase of

Re, and the coupling effect of shear-thinning on both

properties further increases Nu.
The effect of Prandtls number (Pr) is also investigated

and the results are shown in Fig. 9 for the shear-thinning

CMC fluid. With Pr ¼ 500, 1000, and 2000, Nu is found
to increase with the Re number. In addition, the larger

Prandtls number, the larger the predicted Nu. It is also
observed that the variation of Nu due to different Pr
decreases as Reynolds number increases. This is because

at low Re, material properties has significant effect on
the flow, and such effect is attenuated as inertia becomes

the dominant factor at higher Reynolds number.
5. Conclusion

The EVSS/SUPG finite element method is applied to

solve non-isothermal flow of a shear-thinning polymeric

CMC liquid past a submerged circular cylinder. The

constitutive equation adopted for this flow simulation is

a differential-type White–Metzner model, which de-

scribes the non-Newtonian behavior of this fluid. The

SUPG technique is used in the momentum equation to

handle the high Reynolds number flow regimes. The

high temperature region becomes smaller as Reynolds

number becomes higher.

The effects of fluid elasticity, inertia, and shear-thin-

ning on drag and heat transfer are investigated. It is

concluded that, inertia and fluid elasticity increase drag,

which can be attenuated by the addition of shear-

thinning. For the three types of fluid considered, the

dimensionless drag coefficient CD decreases as Reynolds

number increases, while the overall Nusselt number Nu
increases with increasing Reynolds number, and ap-

proaches an asymptote for non-shear-thinning UCM

fluid. The effect of Prandtls number on Nu for shear-

thinning CMC fluid is found that, the larger the Prandtls

number, the larger the predicted Nu.
References

[1] J.S. Ultmann, M.M. Denn, Slow viscoelastic flow past

submerged objects, Chem. Eng. J. 2 (1971) 81–89.

[2] B. Mena, B. Caswell, Slow flow of an elastic-viscous fluid

past an immersed body, Chem. Eng. J. 8 (1974) 125–134.

[3] O. Manero, B. Mena, On the slow flow of viscoelastic

liquids past a circular cylinder, J. Rheol. 32 (6) (1981) 621–

639.

[4] D.F. James, A.J. Acosta, The laminar flow of dilute

polymer solutions around circular cylinders, J. Fluid Mech.

42 (1970) 269–288.

[5] G. Pilate, M.J. Crochet, Plane flow of a second-order fluid

past submerged boundaries, J. Rheol. 32 (6) (1981) 621–

654.

[6] P. Townsend, A numerical simulation of Newtonian and

viscoelastic fluid flow past stationary and rotating cylin-

ders, Rheol. Acta 6 (1980) 219–243.

[7] V. Delvaux, M.J. Crochet, Numerical prediction of ano-

malous transport properties in viscoelastic flow, J. Non-

Newtonian Fluid Mech. 37 (1990) 297–315.

[8] J.M. Marchal, M.J. Crochet, A new mixed finite element

for calculating viscoelastic flow, J. Non-Newtonian Fluid

Mech. 26 (1987) 77–114.

[9] M.A. Mendelson, P.W. Yeh, R.A. Brown, Finite element

calculation of viscoelastic flow in a journal bearing: I. Small

eccentricities, J. Non-Newtonian Fluid Mech. 10 (1982)

31–54.

[10] F. Debae, V. Legat, M.J. Crochet, Practical evaluation for

mixed finite element methods for viscoelastic flow, J. Rheol.

38 (2) (1994) 421–442.

[11] S.S. Chono, Y. Iemoto, Numerical simulation of visco-

elastic flow in two-dimensional L-shaped channels,

J. Rheol. 36 (2) (1992) 335–356.

[12] N. Brooks, T.J. Hughes, Steamline upwind/Petrov–

Galerkin formulation for convection dominated flows with

particular emphasis on the incompressible Navier–Stokes

equations, Comp. Meth. Appl. Mech. Eng. 32 (1982) 199–

259.

[13] R.-Y. Chang, W.-L. Yang, Numerical simulation of non-

isothermal extrudate awell at high extrusion rates, J. Non-

Newtonian Fluid Mech. 51 (1993) 1–19.

[14] H.A. Van Der Vorst, BiCGSTAB: a fast and smoothly

converging variant of Bi-CG for the solution of nonsym-

metric linear system, SIAM J. Sci. Atat. Comput. 13 (1992)

631–644.

[15] S.A. Dhahir, K. Walters, On non-Newtonian flow past a

cylinder in a confined flow, J. Rheol. 33 (1989) 781–804.

[16] H. Schlichting, Boundary Layer Theory, McGraw-Hill,

New York, 1960.


	Non-isothermal flow of a polymeric fluid past a submerged circular cylinder
	Introduction
	Mathematical modelling
	Numerical method
	Non-dimensional governing equations in EVSS form
	Weak formulation of the non-dimensional governing equations

	Results and discussion
	Drag on the cylinder
	Nusselt numbers

	Conclusion
	References


